วันพฤหัสบดีที่ 4 ธันวาคม พ.ศ. 2557

ประวัติ

ชื่อ : นายกุลทรัพย์  พลกลาง
ชื่อเล่น :รุท
รหัสนิสิต: 56670084  กลุ่ม 3301
คณะภูมิสารสนเทศศาสตร์   มหาวิทยาลัยบูรพา  

ความหมายของคำว่า Remote Sensing

ความหมายของคำว่า Remote Sensing

การสำรวจระยะไกล (Remote Sensing)
รีโมตเซนซิง (Remote Sensing) หรือการสำรวจข้อมูลระยะไกล (การรับรู้ระยะไกล) เป็นศัพท์เทคนิคที่ใช้เป็นครั้งแรกในประเทศสหรัฐอเมริกาใน พ.ศ.2503 หมายถึง วิทยาศาสตร์และเทคโนโลยีแขนงหนึ่ง ที่บันทึกคุณลักษณะของวัตถุ (Object) หรือปรากฎการณ์ (Phenomena) ต่างๆ จากการสะท้อนแสง/หรือ การแผ่รังสีพลังงานแม่เหล็กไฟฟ้า (Electromagnetic Energy) โดยเครื่องวัด/อุปกรณ์บันทึกที่ติดอยู่กับยานสำรวจ  การใช้รีโมตเซนซิงเริ่มแพร่หลายนับตั้งแต่สหรัฐอเมริกาได้ส่งดาวเทียมสำรวจทรัพยากรดวงแรก LANDSAT-1 ขึ้นใน พ.ศ.2515
เราสามารถหาคุณลักษณะของวัตถุได้จากลักษณะการสะท้อนหรือการแผ่พลังงานแม่เหล็กไฟฟ้าจากวัตถุนั้น ๆ คือ วัตถุแต่ละชนิด จะมีลักษณะการสะท้อนแสงหรือการแผ่รังสีที่เฉพาะตัวและแตกต่างกันไป ถ้าวัตถุหรือสภาพแวดล้อมเป็นคนละประเภทกัน” คุณสมบัติของคลื่นแม่เหล็กไฟฟ้าเป็นสื่อในการได้มาของข้อมูลใน 3 ลักษณะ คือ ช่วงคลื่น(Spectral) รูปทรงสัณฐานของวัตถุบนพื้นโลก (Spatial) และการเปลี่ยนแปลงตามช่วงเวลา (Temporal) รีโมตเซนซิงจึงเป็นเทคโนโลยีที่ใช้ในการจำแนก และเข้าใจวัตถุหรือสภาพแวดล้อมต่าง ๆ จากลักษณะเฉพาะตัวในการสะท้อนแสงหรือแผ่รังสี


ข้อมูลที่ได้จากการสำรวจระยะไกล ในที่นี้จะหมายถึง ข้อมูลที่ได้จากการถ่ายภาพทางเครื่องบินในระดับต่ำ ที่เรียกว่า รูปถ่ายทางอากาศ (Aerial Photo) และข้อมูลที่ได้จากการบันทึกภาพจากดาวเทียมในระดับสูงกว่า เรียกว่า ภาพถ่ายจากดาวเทียม (Satellite Image)

ความหมายของคำว่า 
“Remote Sensing”  

“Remote Sensing” เป็นศาสตร์ของการศึกษาโครงสร้างและองค์ประกอบของพื้นผิวโลกและบรรยากาศโลกจากระยะไกล โดยอาศัยอุปกรณ์การตรวจวัด ซึ่งใช้คลื่นแม่เหล็กไฟฟ้าเป็นสื่อในการได้มาซึ่งข้อมูล เช่น กล้องถ่ายภาพทางอากาศ หรือ เครื่องกวาดภาพ ที่ติดตั้งไว้บนดาวเทียม เป็นต้น
สำหรับชื่อเรียกคำนี้ใน ภาษาไทย ที่นิยมใช้กันมาก มีอยู่ 4 แบบ คือ
1. การรับรู้จากระยะไกล (ราชบัณฑิตฯ)      
2. การสำรวจข้อมูลจากระยะไกล
3. การตรวจวัดข้อมูลจากระยะไกล
4. โทรสัมผัส



คำจำกัดความของ “Remote Sensing”

สำหรับ คำจำกัดความ ของคำนี้ ที่เป็น ภาษาไทย คือ
1.  วิทยาศาสตร์และศิลปะของการได้มาซึ่งข้อมูลเกี่ยวกับ วัตถุ พื้นที่ หรือ ปรากฏการณ์ จากเครื่องบันทึกข้อมูล    โดยปราศจากการเข้าไปสัมผัสวัตถุเป้าหมาย ทั้งนี้โดยอาศัยคุณสมบัติของคลื่นแม่เหล็กไฟฟ้าเป็นสื่อ ในการได้มาของข้อมูล   (สุรชัย รัตนเสริมพงศ์ 2536)

สำหรับคำจำกัดความซึ่งเป็น ภาษาอังกฤษ ของ คำว่า 
“Remote Sensing”คือ
1.  The acquisition of physical data of an object without touch or contact. (กว้างที่สุด)
2.  Science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter.
3.  The instrumentation, techniques and methods to observe the Earth’s surface at a distance and to interpret the images or numerical values obtained in order to acquire meaningful  information of particular object on Earth.


4.  Science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area or phenomenon under investigation.


แหล่งอ้างอิง
http://yingpew103.wordpress.com/2013/01/18/%E0%B9%80%E0%B8%97%E0%B8%84%E0%B9%82%E0%B8%99%E0%B9%82%E0%B8%A5%E0%B8%A2%E0%B8%B5%E0%B8%94%E0%B9%89%E0%B8%B2%E0%B8%99%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B3%E0%B8%A3%E0%B8%A7%E0%B8%88%E0%B8%A3/

การสำรวจทรัพยากรด้วยดาวเทียมในประเทศไทย

การสำรวจทรัพยากรด้วยดาวเทียมในประเทศไทย

การสำรวจทรัพยากรด้วยดาวเทียมในประเทศไทย 
    สำนักงานพัฒนาเทคโนโลยีอวกาศและภูมิสารสนเทศ(องค์การมหาชน) (สทอภ.)
Geo-Informatics and Space Technology Development Agency(Public Organization) (GISTDA)
HTTP://WWW.GISTDA.OR.TH                                    
 มหาวิทยาลัยเชียงใหม่
 มหาวิทยาลัยขอนแก่น
 มหาวิทยาลัยสงขลานครินทร์
 มหาวิทยาลัยบูรพา


 มหาวิทยาลัยนเรศวร



ความเป็นมาของการสำรวจทรัพยากรด้วยดาวเทียมในประเทศไทย
ประเทศไทยได้เข้าร่วมโครงการสำรวจทรัพยากรธรรมชาติด้วยดาวเทียม ขององค์การบริหารการบินและอวกาศแห่งชาติสหรัฐอเมริกา(NASA) ตามมติคณะรัฐมนตรีเมื่อเดือนกันยายน 2514 ให้แต่งตั้งคณะกรรมการแห่งชาติว่าด้วย การประสานงานการสำรวจทรัพยากรธรรมชาติด้วยดาวเทียมและหอปฏิบัติการลอยฟ้า ซึ่งประกอบด้วยกรรมการจากหน่วยงานราชการต่างที่เกี่ยวข้อง มีหน้าที่ในการกำหนดนโยบาย วางแผน ประสานงาน เกี่ยวกับการสำรวจทรัพยากรธรรมชาติด้วยดาวเทียมของประเทศไทยตลอดจนส่งเสริมสนับสนุนอุปกรณ์ และการฝึกอบรมเพื่อเสริมสร้างบุคลากร ในด้านการจัดการทรัพยากรต่างๆ โดยได้แต่งตั้งคณะอนุกรรมการต่างๆ อาทิ คณะอนุกรรมการวางแผนและติดตามผล คณะอนุกรรมการการเกษตร ป่าไม้และ การใช้ที่ดิน คณะอนุกรรมการธรณีวิทยา อุทกวิทยา สมุทรศาสตร์และสิ่งแวดล้อม คณะอนุกรรมการประสานงานการจัดตั้งสถานีรับสัญญาณจากดาวเทียมสำรวจทรัพยากร และคณะอนุกรรมการวิเคราะห์ข้อมูลด้วยคอมพิวเตอร์ เพื่อปฎิบัติงานและประสานงานการนำข้อมูลจากดาวเทียมสำรวจทรัพยากรไปประยุกต์ใช้ในด้านต่างๆ เพื่อเป็นข้อมูลพื้นฐานในการพัฒนาประเทศอย่างกว้างขวาง และเป็นผลดียิ่ง เช่น ป่าไม้ การใช้ที่ดิน การเกษตร ธรณีวิทยา อุทกวิทยา สมุทรศาสตร์ และสิ่งแวดล้อม


ปลายปี 2524 ประเทศไทยได้จัดตั้ง สถานีรับสัญญาณดาวเทียมสำรวจภาคพื้นดินเป็นแห่งแรกในภูมิภาคเอเซียตะวันออกเฉียงใต้ ตั้งอยู่ในเขตลาดกระบัง มีรัศมีขอบข่ายการรับสัญญาณประมาณ 2,800 กม. ซึ่งครอบคลุม 17 ประเทศ ดังนี้ ไทย อินโดนีเซีย ฟิลิปปินส์ สิงคโปร์ มาเลเซีย พม่า กัมพูชา เวียดนาม ลาว บังกลาเทศ ภูฏาน เนปาล อินเดีย บรูไน ศรีลังกา ไต้หวัน สาธารณรัฐประชาชนจีน และ ฮ่องกง สถานีรับฯ นี้ สามารถรับสัญญาณจากดาวเทียม LANDSAT 3 และดาวเทียมอุตุนิยมวิทยา GMSและ NOAA
                ปลายปี 2530 สถานีรับสัญญาณดาวเทียมภาคพื้นดินได้รับการพัฒนาปรับปรุงให้สามารถรับสัญญาณจากดาวเทียมรายละเอียดสูง คือ ระบบ Thematic Mapper ของดาวเทียม LANDSAT - 5 ซึ่ง มีรายละเอียด 30 ม. และระบบ HRV ของดาวเทียม SPOT มีรายละเอียดภาพ 20 ม. ในภาพสี และ 10 ม. ในภาพขาวดำ นอกจากนี้ สถานีรับฯ ยังรับสัญญาณดาวเทียม MOS1 ของญี่ปุ่นที่มีรายละเอียด 50 ม.
 ประเทศไทยได้จัดตั้ง สถานีควบคุมดาวเทียมที่  อ.ศรีราชา จ.ชลบุรี

การจำแนกดาวเทียมตามลักษณะการใช้ประโยชน์ 4 ประเภท คือ


1. ดาวเทียมอุตุนิยมวิทยา(Meteorological Satellites) เช่น ดาวเทียม TIROS, NOAA, SMS/GOES, GMS, METEOSAT 

ดาวเทียม TIROS


ดาวเทียม NOAA


2. ดาวเทียมสื่อสาร(Communication Satellites) เช่น ดาวเทียม TELSTAR, PALAPA, INTELSAT 

ดาวเทียมPALAPA


ดาวเทียม INTELSAT 


3. ดาวเทียมสำรวจแผ่นดิน เช่น ดาวเทียม LANDSAT, SEASAT, SPOT, MOS, THAICHOTE 

ดาวเทียม Landsat 8


ดาวเทียม SPOT


4. ดาวเทียมหาตำแหน่งพิกัดบนผิวโลก
 ดาวเทียม GPS




ลักษณะการโคจรของดาวเทียม
1. การโคจรในแนวระนาบกับเส้นศูนย์สูตร (Geostationary or Earth synchronous)


                การโคจรในแนวระนาบโคจรในแนวระนาบกับเส้นศูนย์สูตร สอดคล้องและมีความเร็วในแนววงกลมเท่าความเร็วของโลกหมุนรอบตัวเอง ทำให้ดาวเทียมเสมือนลอยนิ่งอยู่เหนือตำแหน่งเดิมเหนือผิวโลก(Geostationary or Earth synchronous)โดยทั่วไปโคจรห่างจากโลกประมาณ 36,000 กม. ซึ่งส่วนใหญ่ ได้แก่ ดาวเทียมอุตุนิยมวิทยา และดาวเทียมสื่อสาร


2. การโคจรในแนวเหนือ-ใต้ (Sun Synchronous)
โคจรในแนวเหนือ-ใต้รอบโลก ซึ่งสัมพันธ์กับดวงอาทิตย์(Sun Synchronous)โดยโคจรผ่านแนวศูนย์สูตร ณ เวลาท้องถิ่นเดียวกัน โดยทั่วไปโคจรสูงจากพื้นโลกที่ระดับต่ำกว่า 2,000 กม. ซึ่งมักเป็นดาวเทียมสำรวจทรัพยากรแผ่นดิน

ประโยชน์ของการตรวจวัดจากระยะไกล

ประโยชน์ของการตรวจวัดจากระยะไกล

ประโยชน์ของการตรวจวัดจากระยะไกล

การตรวจวัดจากระยะไกลมี ข้อดี อยู่หลายประการ ซึ่งเป็นประโยชน์มากต่อการศึกษาองค์ประกอบและ โครงสร้างของบรรยากาศและพื้นผิวโลก ทั้งในระดับ ท้องถิ่นและระดับโลก อาทิเช่น
1.  ตรวจวัดครอบคลุมพื้นที่ได้เป็น บริเวณกว้าง ในแต่ละครั้ง โดยเฉพาะการตรวจวัดจากอวกาศ   ทำให้มองภาพรวมได้ง่าย และได้ข้อมูลที่ค่อนข้างทันต่อเหตุการณ์
2.  ตรวจวัดได้ใน หลายระดับ ของ ความละเอียด ทั้งความละเอียดเชิงพื้นที่และความละเอียดเชิงรังสี  ขึ้นอยู่กับความสามารถของอุปกรณ์ และระดับความสูงของสถานีติดตั้ง เป็นสำคัญ
3.  ตรวจวัดได้ อย่างต่อเนื่อง ทั้งในช่วงกลางวันและช่วงกลางคืน โดยเฉพาะการตรวจวัดในช่วง เทอร์มอลอินฟราเรด และ ไมโครเวฟ ซึ่งไม่จำเป็นต้องใช้แสงอาทิตย์ช่วยในการสำรวจ
4.  ตรวจวัดได้ใน หลายช่วงคลื่น ไม่เฉพาะในช่วงแสงขาวที่ตาเรามองเห็นเท่านั้น ทำให้ได้ข้อมูล เกี่ยวกับวัตถุหรือพื้นที่ที่ศึกษา มากกว่าที่เรารับรู้ตามปกติมาก
5.  ตรวจวัดข้อมูลในพื้นที่ ที่เข้าถึงทางพื้นดินลำบาก ได้อย่างมีประสิทธิภาพ เนื่องจากอุปกรณ์ที่ใช้ต้องการเพียงสัญญาณคลื่นแม่เหล็กไฟฟ้า ที่มาจากพื้นที่ที่ศึกษา เท่านั้นในการทำงาน

สำหรับ ข้อด้อย ของการตรวจวัดจากระยะไกล ที่เห็นได้ชัดมีอาทิเช่น
1.  ต้องใช้ งบลงทุน ในเบื้องต้นและงบดำเนินการสูง โดยเฉพาะในการจัดหาสถานีติดตั้งและการสร้าง อุปกรณ์ตรวจวัด เนื่องจากเป็นเทคโนโลยีระดับสูง
2.  ต้องใช้ บุคลากร ที่ได้รับการฝึกฝนมาโดยเฉพาะในการดำเนินงาน เนื่องจากต้องการผู้ที่มีความรู้พื้นฐานที่ดีมากพอสำหรับการ บริหารจัดการ ระบบและการ ใช้ประโยชน์ จากข้อมูลที่ได้
3.  ข้อมูลที่ได้บางครั้งยังขาด ความละเอียด เชิงพื้นที่มากพอ เนื่องมาจากเป็นการสำรวจจากระยะไกล   ทำให้การศึกษาในบางเรื่องอาจมีข้อจำกัดอยู่มากพอควร
4.  ข้อมูลที่ได้บางครั้งยังมี ความคลาดเคลื่อน อยู่สูง ซึ่งเกิดมาได้จากหลายสาเหตุ ทั้งส่วนที่เกิดมาจากความบกพร่องของตัวระบบเอง และส่วนที่เกิดมาจากสภาวะแวดล้อมขณะทำการตรวจวัด

สำหรับแนวทาง การใช้ประโยชน์ ข้อมูลที่ได้มาจากการตรวจวัดระยะไกล
1.   การสำรวจทางโบราณคดีและมานุษยวิทยา (Archaeology and Anthropology Study)    ที่สำคัญคือ การสำรวจ ที่ตั้ง ของแหล่งโบราณสถาน ในพื้นที่ซึ่งยากต่อการเข้าถึงทางพื้นดิน รวมถึงที่อยู่ ใต้ผิวดินไม่ลึกมากนัก โดยมักใช้ข้อมูลที่ได้จากเรดาร์และเครื่องวัดการแผ่รังสีช่วง IR 
                                                   ภาพถ่ายทางอากาศของ นครวัด (Angkor Wat) ประเทศกัมพูชา ในปี ค.ศ.1999


ภาพของ นครวัด (Angkor Wat) ประเทศกัมพูชา จากดาวเทียม JERS-1 ในปี ค.ศ.1995

2.    การรังวัดภาพและการทำแผนที่ (Photogrammetry and Cartography)    ที่สำคัญคือการทำ แผนที่แสดง ลักษณะภูมิประเทศ (topographic map) และ แผนที่แสดง ข้อมูลเฉพาะอย่าง (thematic map) ซึ่งมักต้องใช้เทคนิคทาง GIS เข้ามาช่วยด้วย

ตัวอย่างภาพเรดาร์แสดง ลักษณะภูมิประเทศ (topographic image) ในรัฐแคลิฟอร์เนีย


3.     การสำรวจทางธรณีวิทยา (Geological Survey) 
ที่สำคัญคือ การสำรวจโครงสร้างชั้นดินและชั้นหิน การสำรวจแหล่งแร่ การสำรวจแหล่งน้ำมัน  การสำรวจแหล่งน้ำใต้ดิน และ การสำรวจพื้นที่เขตภูเขาไฟและเขตแผ่นดินไหว
4.     การศึกษาทางวิศวกรรมโยธา (Civil Engineering)
ที่สำคัญคือ การศึกษาพื้นที่ (site study) การวางผังระบบสาธารณูปโภค (infrastructure planning)   และ การวางแผนจัดระบบการขนส่งและการจราจร (transport and traffic planning)
5.  การศึกษาในภาคเกษตรและการจัดการป่าไม้ (Agricultural and Forestry Study)
ที่สำคัญมีอาทิเช่น การใช้ประโยชน์ที่ดินภาคเกษตร  การสำรวจคุณภาพดิน  การสำรวจความสมบูรณ์ของพืชพรรณ และ การตรวจสอบการใช้ประโยชน์และการเปลี่ยนแปลงของพื้นที่ป่าไม้ตามเวลา

ตัวอย่างภาพดาวเทียมแสดง ลักษณะภูมิประเทศ และความสมบูรณ์ของ พืชพรรณ ในสหรัฐอเมริกา


6.   การวางผังเมือง (Urban planning)
ที่สำคัญมีอาทิเช่น การใช้ประโยชน์ที่ดินในเขตเมือง  การเปลี่ยนแปลงเชิงคุณภาพและขนาดของเขตเมือง และการออกแบบพื้นที่เชิงภูมิสถาปัตย์ (landscape modeling) เป็นต้น

ตัวอย่างภาพสีธรรมชาติจากเครื่อง Landsat/TM แสดง การใช้ประโยชน์ที่ดิน ในรูปแบบที่แตกต่างกันไป


7.   การศึกษาแนวชายฝั่งและมหาสมุทร (Coastal and Oceanic Study) 

ที่สำคัญมีอาทิเช่น  การเปลี่ยนแปลงเชิงคุณภาพและขนาดของเขตชายฝั่ง การจัดการพื้นที่ชายฝั่ง  และ  การศึกษาคุณสมบัติเชิงกายภาพและเชิงเคมีของน้ำทะเลระดับบน เช่น อุณหภูมิหรือความเค็ม เป็นต้น
ภาพแสดงลักษณะชายฝั่งอ่าวไทยรูปตัว ก


8.   การติดตามตรวจสอบภัยธรรมชาติ (Natural Disaster Monitoring)
ที่สำคัญมีอาทิเช่น น้ำท่วมและแผ่นดินถล่ม การระเบิดของภูเขาไฟและแผ่นดินไหว การเกิดไฟป่า หรือ การเกิดไฟในแหล่งถ่านหินใต้ผิวดิน (subsurface coal fires) เป็นต้น



9.  การสำรวจบรรยากาศและงานวิจัยทางอุตุนิยมวิทยา (Atmospheric and Meteorological Study)
ที่สำคัญมีอาทิเช่น การเปลี่ยนแปลงของสภาพอากาศในช่วงสั้น  การศึกษาองค์ประกอบของอากาศที่ระดับความสูงต่าง ๆ เช่น ไอน้ำ คาร์บอนไดออกไซด์ หรือ โอโซน รวมไปถึง การตรวจสอบการแปรปรวนของอากาศระดับล่าง เช่น การเกิดพายุขนาดใหญ่ หรือ พายุฝนฟ้าคะนอง เป็นต้น

ภาพดาวเทียมของพายุไต้ฝุ่น Imbudo ซึ่งเกิดในเขตทะเลจีนใต้  ในช่วงเดือนกรกฎาคม 2546



ตัวอย่างข้อมูล ปริมาณน้ำฝน ใน มิติ ของพายุไต้ฝุ่น Sinlaku ที่ได้จากดาวเทียม TRMM


     ข้อมูลของ ชั้นโอโซน ในแถบขั้วโลกใต้ เปรียบเทียบ ระหว่างปี ค.ศ.2000, 2002 และ 2003 จากเครื่อง TOMS

10.  การหาข้อมูลเพื่อภารกิจทางทหาร (Military Services)
ที่สำคัญคือ การถ่ายภาพจากทางอากาศด้วยเครื่องบินสอดแนม (spy plane)  และ การสำรวจพื้นที่ที่สนใจ โดยใช้เครื่องตรวจวัดประสิทธิภาพสูงบนดาวเทียม
                                                                             ภาพของเขตพระราชวังในกรุง Baghdad ประเทศ อิรัก ก่อนถูกโจมตีโดยกองทัพสหรัฐอเมริกา
                                     

พัฒนาการของระบบการตรวจวัดจากระยะไกล

พัฒนาการของระบบการตรวจวัดจากระยะไกล


พัฒนาการของระบบการตรวจวัดจากระยะไกล
โดยทั่วไป เราสามารถแบ่ง พัฒนาการ ของระบบ RS ออกได้เป็น 2 ช่วงหลักคือ
ช่วงก่อนปี ค.ศ.1960
เรียกว่าเป็นยุคของ การสำรวจทางอากาศ โดยมี เครื่องบินและบอลลูน เป็นสถานีติดตั้งทีสำคัญสำหรับเทคนิคการตรวจวัดที่ใช้งานกันมากที่สุดคือ การถ่ายภาพทางอากาศ (aerial photography)
                 ช่วงตั้งแต่ปี ค.ศ.1960 เป็นต้นมา 
เรียกว่าเป็นยุคของ การสำรวจจากอวกาศ (space age) หรือ ยุคดาวเทียม เนื่องจาก อุปกรณ์การตรวจวัดที่สำคัญมักจะติดตั้งไว้บน ดาวเทียม ซึ่งโคจรอยู่รอบโลกที่ระดับความสูงต่าง ๆ กัน
องค์ประกอบของระบบ RS
สามารถ จำแนก องค์ประกอบของระบบตรวจวัดจากระยะไกลออกได้เป็น 3 ส่วนหลัก คือ
1.  แหล่งข้อมูลของการตรวจวัด (Sources) :ในที่นี้คือ พื้นผิวและบรรยากาศของโลก
2.  อุปกรณ์การตรวจวัดจากระยะไกล (Remote Sensor) : ใช้คลื่นแม่เหล็กไฟฟ้าเป็นสื่อ
3.  ระบบการประมวลผลข้อมูล (Data Processing System) : ใช้ผู้ปฏิบัติการและระบบคอมพิวเตอร์

ลำดับการพัฒนาของ เทคโนโลยี ที่เกี่ยวข้องกับ ระบบ RS ในช่วง ค.ศ. 1860-1960
ลำดับการพัฒนาของ เทคโนโลยี ที่เกี่ยวข้องกับ ระบบ RS ในช่วง ค.ศ. 1950-ปัจจุบัน

การวิเคราะห์ข้อมูลด้วยสายตา (Visual Interpretation)

การวิเคราะห์ข้อมูลด้วยสายตา (Visual Interpretation) 
                   

              การแปลตีความข้อมูลภาพจากดาวเทียมด้วยสายตาข้อมูลที่นำมาแปลตีความหรือจำแนกประเภทข้อมูลภาพจากดาวเทียมด้วยตา เป็น ข้อมูลที่อยู่ในรูปของภาพพิมพ์หรือฟิล์ม โดยภาพแต่ละช่วงคลื่นของการบันทึกภาพ อยู่ในลักษณะขาวดำจึงยากต่อการแปลตีความหมาย ด้วยสายตา การเลือกใช้ภาพสีผสม ซึ่งได้มีการเน้นข้อมูลภาพ (Enhancement) ให้สามารถจำแนกประเภทข้อมูลได้ชัดเจนและง่ายขึ้นนั้น สามารถทำได้โดยกำหนดสีของแต่ละช่วงคลื่นเลียนแบบระบบธรรมชาติ แล้วนำภาพที่ได้ให้แสงสีแล้วนี้ มารวมกัน 3 ภาพ (3 ช่วงคลื่น) เพื่อให้เกิดเป็นภาพสีผสมขึ้น ในช่วงคลื่นสั้นและยาว โดยใช้แสงสีน้ำเงิน เขียวและแดง ตามลำดับของแสงช่วงคลื่นที่สายตาสามารถมองเห็น จึงถึงช่วงคลื่นอินฟาเรด ภาพสีผสมที่ปรากฏให้เห็น คือ พืชพรรณ ต่างๆ จะปรากฏเป็นสีแดงหรือสีเขียว เนื่องจากปฏิกิริยาการสะท้อนสูง ที่คลื่นช่วงยาว ภาพที่พืชปรากฏสีแดง เรียกว่า ภาพสีผสมเท็จ (False Colour Composite – FCC) และภาพที่พืชปรากฏเป็นสีเขียว เรียกว่า ภาพผสมจริง (True Colour)
                องค์ประกอบในการแปลและตีความภาพถ่ายจากดาวเทียมด้วยสายตา
                 1. สีและระดับความเข้มของสี (Colour tone and brightness)
                 2. รูปร่าง (Shape)
                 3. ขนาด (Size)
                 4. รูปแบบ (Pattern)
                 5. ความหยาบละเอียดของเนื้อภาพ (Texture)
                 6. ความสัมพันธ์กับตำแหน่งและสิ่งแวดล้อม (Location and Association)
                 7. การเกิดเงา (Shadow)
                 8. การเปลี่ยนแปลงตามฤดูกาล (Temporal change)
                 9. ระดับสี (Tone)
                    นอกจากองค์ประกอบดังกล่าวแล้ว สิ่งที่จะช่วยในการแปลความหมายได้ถูกต้องมากขึ้นได้แก่ ลักษณะภูมิประเทศและการเลือกภาพในช่วงเวลาที่เหมาะสม
              หลักการวิเคราะห์ภาพถ่ายจากดาวเทียมด้วยสายตา ควรดำเนินการแปลและตีความจากสิ่งที่เห็นได้ง่าย ชัดเจนและคุ้นเคยเสียก่อนแล้วจึงพยายามวินิจฉัยในสิ่งที่จำแนกได้ยาก ไม่ชัดเจนในภายหลัง หรือเริ่มจากระดับหยาบๆก่อนแล้วจึงแปลในรายละเอียดที่หลัง

การวิเคราะห์ข้อมูลด้วยคอมพิวเตอร์ (Digital Analysis)

 การวิเคราะห์ข้อมูลด้วยคอมพิวเตอร์ (Digital Analysis)
                  

          วิธีการจำแนกข้อมูลดาวเทียมด้วยระบบคอมพิวเตอร์แบ่งออกได้ 2 วิธี ได้แก่
                    1 การจำแนกประเภทข้อมูลแบบกำกับดูแล (Supervised Classification) เป็นวิธีการจำแนกข้อมูลภาพซึ่งจะต้องประกอบด้วยพื้นที่ฝึก (Training areas) การจำแนกประเภทของข้อมูลเบื้องต้น โดยการคัดเลือกเกณฑ์ของการจำแนกประเภทข้อมูล และกำหนดสถิติของของประเภทจำแนกในข้อมูล จากนั้นก็จะทำการวิเคราะห์ข้อมูลทั้งภาพ และรวบรวมกลุ่มชั้นประเภทจำแนกสถิติคล้ายกันเข้าด้วยกัน เพื่อจัดลำดับขั้นข้อมูลสุดท้าย นอกจากนี้แล้วก็จะมีการวิเคราะห์การจำแนกประเภทข้อมูลลำดับสุดท้าย หรือตกแต่งข้อมูลหลังจากการจำแนกประเภทข้อมูล (Post-classification)
                    2 การจำแนกประเภทข้อมูลแบบไม่กำกับดูแล (Unsupervised Classification)
เป็นวิธีการจำแนกประเภทข้อมูลที่ผู้วิเคราะห์ไม่ต้องกำหนดพื้นที่ฝึกของข้อมูลแต่ละประเภทให้กับคอมพิวเตอร์ มักจะใช้ในกรณีที่ไม่มีข้อมูลเพียงพอในพื้นที่ที่การจำแนก หรือผู้ปฏิบัติไม่มีความรู้ความเคยชินในพื้นที่ที่ศึกษา วิธีการนี้สามารถทำได้โดยการสุ่มตัวอย่างแบบคละ แล้วจึงนำกลุ่มข้อมูลดังกล่าวมาแบ่งเป็นประเภทต่างๆ